Finned Tubes: Industrial Applications | Anand Seamless

Author: Justin

May. 13, 2024

54

0

Finned Tubes: Industrial Applications | Anand Seamless

Finned tubes are a series of tubes which have fins attached on its exteriors. This increases the contact area with the fluid which is outside the tube. This extended outer area augments the heat transfer rate. It also exchanges heat between the outside and inside the tube.

If you are looking for more details, kindly visit finned copper tubing.

Inside of the tube is for the liquid to flow and the outside has air or some other gas. The main components of heat exchangers in any industry are Finned Tubes. Usually, crossflow happens here and this is due to the radial fins. If you want a counter-flow, use longitudinal fins instead.

In most of the cases, there is an open heat exchanger with the application of finned tubes for air flow. However, internal finned tubes can also be used in a closed heat exchanger.

Finned tubes are made by helically twisting strips on the tubes. They can be longitudinal, transverse, parallel, flat, round, oval, etc. For industrial purposes where the outside flow has to streamline with the tube length, the best finned tube is the one with longitudinal fins. On the other hand, for air coolers, crossflow exchangers, gas flows, shell and tube heat exchangers, or turbulent flows, you can use transverse finned tubes.

High-finned tubes are used to heat and cool down gases in heating, machinery, and plant technologies.

For evaporating and condensing refrigerants or when you have to control the temperature of liquids and gases, you can use low finned tubes. Then there are safety tubes which are also known as double-wall tubes. They have particular leakage paths to separate fluids.

Tubes applicable in oil coolers, condensers, water heaters, etc., are medium-high finned tubes. For specific applications with the best designs, stainless steel finned tubes can be used.

Other Application of Finned Tubes

 
Finned tubes are used to relay heat in any industry where hot fluid has to be transferred to cold fluid through a proper medium. They expand the exterior of the tube. Finned tubes have the capacity to take the place of bare tubes with reduced volume and cost.

One of the significant feature of finned tubes is to secure the surface area of heat exchanger tubes. Heat transfer is based on the outside area to which the fluid is exposed, temperature difference between the fluids, and the heat transfer between the tube and fluids.

Application of Finned Tubed in Industries

 

  • Petroleum Industry
  • Chemical industry
  • Wood industry
  • Food industry
  • Steel Industry
  • Plastic molding industry
  • Glycol dehydration units
  • Coils for hybrid cooling towers
  • Printing Machines
  • Production of surface coatings
  • Solvent recovery
  • Cooling of turbine air intakes
  • Textile production
  • Greenhouse heaters and breeding
  • Tanneries
  • Anti-freeze coils for process air
  • Paper works

Finned tubes heat exchangers can be applied in various household as well as industrial machineries. Car radiator also used finned tube heat exchangers which cools the hot water in the tubes when air passes through it. This is a crossflow process.

For industrial purposes, finned tube heat exchangers are generally used to heat or cool the air and other gases. Finned tubes have fins attached to its exterior areas. Hence, with the increase in the outside area, the heat transfer rate also increases. Moreover, in the long run, it abbreviates the overall equipment size.

If you are looking to purchase finned tubes for any of the above mentioned industrial applications, call us on +91-9099996851. Being one of the leading finned tubes manufacturers in India, we can help you get products as per your requirements. We also supply seamless tubes made of carbon steel and alloys.

Also Read: Why Does Oil & Gas Companies Use Finned Tubes?

Know about Heat Exchanger Finned Tube

Heat Exchanger Finned Tube - 8 types you should know about

In a previous article we focused on problems such as corrosion, erosion and thermal fatigue in the tubes of Shell & Tube heat exchangers.

In this month’s article, we aim to provide you with an overview of some of the different types of finned tubes (extended surface tubes) you may encounter and the applications or duties they suit.

Fig 1: Large Seven Fan Finned Coil cooler – copper tubes with bulleted aluminium fins

Finned tube heat exchangers generally use air to cool or heat fluids such as air, water, oil or gas, or they can be used to capture or recover waste heat. These heat exchangers can used in a broad range of industries including oil & gas, power generation, marine and HVAC&R.

Finned tube heat exchangers have a wide range of applications, a few of which are:

  • diesel charge air coolers;
  • oil coolers;
  • hydrogen coolers;
  • waste heat recovery;
  • driers;
  • air conditioning;
  • air heaters;
  • steam condensers;
  • generator coolers

Finned tube heat exchangers are often used in circumstances where air is the preferred medium for the cooling or heating, particularly where there is limited or poor quality water.

 

In a finned tube heat exchanger, heat is exchanged between a thermally efficient fluid that transports heat efficiently, such as a liquid which has some viscosity, and a fluid that does not, such as air or gas with little density. On the ‘air side’, the tube surface is enhanced by the addition of fins or other elements such as looped wires, designed to increase the surface area of the tube and improve its thermal performance.

 

Fins can range in height (high-fin to low-fin) and the fins can be either pressure connected to the outer surface of the tube or formed into the tube surface.

 

Depending on the intended duty and the environment in which they are to operate, finned tubes can be manufactured in numerous designs and incorporate a combination of differing materials for both the tubes and the fins. The types and combinations of tubes and fins is significant, but in this article, we will explore only the more common types.

Fig. 2: Finned Tube Dry Air Cooler

Fin Profile

The profile of the fins has significant effect of the performance of a finned tube heat exchanger.  It is important to ensure each fin has a tight connection on the tube surface to provide maximum thermal conductivity.

 

The larger the fins and the tighter the fin pitch, the more thermal conductivity is achieved. The trade-off may be an increase in pressure drop which may, in turn, adversely affect performance. A balance between the two opposing functions is vital for effective and optimal thermal performance and equipment function.

Fig. 3: Typical Finned tube schematic with annular fins.
A = fin height; B = fin pitch, C = fin thickness and D = Diameter of

1. Elfin Technology

‘Elfin’ finned tubes are used extensively in hydro power generator coolers and have been chosen by hydro power stations such as Snowy Hydro, Hydro Tasmania and Origin Energy, to provide long lasting and reliable cooling of their important generators.

 

With the Elfin computer-generated technology, each fin strip is mechanically forced over the outside of tube, producing a tight and thermally efficient bond. This process ensures, not only excellent adhesion of the fin to the tube, but the vital inner tube wall is not compromised in any way.

 

Unlike Elfin tubes, bulleted tube fins are formed by passing a bullet inside the tube to enlarge and force its wall outward into the fins to form a bond with the fins.

Fig. 4: Elfin Technology – Titanium Fins and Titanium Tubes. Note the spacer lip on the fin ensuring exact pitch.

As can be seen in Fig. 4 the fins have been precision punched to leave an ‘L’ shaped lip that ensures exact fin pitch spacing between fins. The computerized punch process can adjust the tube pitch minutely to 0.01mm tolerance to conform with the exacting computer calculations. Elfin finned tubes are produced in blocks which are custom sized to fit the exact duty requirements and dimensions of the heat exchanger.

 

Bulleting require tubes that are sufficiently thin and ductile to allow for expansion however Elfin technology allows tubes of any wall thickness and material to be used and ensures the inner surface of the tube is not compromised and the strength of both the tubes and the fins is enhanced.

Additional reading:
Inconel
Buying Prefabricated houses from China with Alibaba, a ...
10 Questions You Should Know to Ask About Flat Pack Container Homes for Sale
Tips to Choose High-Quality Steel Pipe

Are you interested in learning more about nickel alloy pipe? Contact us today to secure an expert consultation!

Fig. 5: Hydro Power Generator Cooler Elfin Block Finned Tubes – Copper tubes & Aluminium fins

Fig. 6: Elfin Block Gas-liquid Heat Exchanger. Note: Rolled Naval Brass Tube Sheet

Fig. 7: Elfin Block Charge Air Cooler. Note: Rolled Naval Brass Tube Sheet

2. Bulleted Fins

With an external appearance similar to Elfin Finned Tubes, bulleted finned tubes are a common and cost-effective way to attach strip fins to tubes. This is achieved by manually placing the fins over the tubes and pushing or pulling a ‘bullet’ through the tube (“bulleting”) to expand the tube wall out into the fins, locking them in place.

 

Bulleting is commonly used in Fin Coil units found in applications such as HVAC&R and is a cost effective process which requires tubes that are of a material and thickness and sufficiently ductile to enable the tube to be expanded into the fins.

 

Helical Fins

Round or Helical Fins come in a number of geometries commonly identified by a letter corresponding to the profile of the base of the fin where it connects with the tube.

Fig. 8: Hydrogen Cooler in the process of manufacture.
Helical wound fins – CuNi tubes / Cu fins

3. ‘L’ Finned Tubes

One common type of finned tube is the ‘L’ fin. Receiving its name from the letter it creates from the cross-sectional view, the ‘L’ fin relies on maximum surface contact between fin and tube which is ensured by tension-forming a fin strip helically around the base tube.

 

This type of connection maximizes the heat transfer capacity and enhances the corrosion protection of the tube. The ‘L’ fin accommodates temperatures between 150 to 170 °C and comes in mainly ductile metals such as aluminum or copper which are capable of withstanding the compression around the base of the fin and allow stretching on the outside during installation.

Fig. 9: Typical Heavy-Duty Dry Air Cooler or Condenser – commonly using copper, aluminium or carbon steel tubes with helical aluminium or galvanized fins.
Note the removable bolts in the header box which allow for inspection and cleaning of the tubes.

Fig. 10: Copper finned tubes copper tubes

Fig. 11: Cross-sectional schematic of L fin

4. ‘LL’ Finned Tube

Manufactured in the same way as the ‘L’ finned tube, the ‘LL’ fin has overlapping feet to completely enclose the base tube, resulting in excellent corrosion resistance. The maximum operating temperature is approximately the same as the ‘L’ fin. This type of fin commonly available in aluminum and copper. The Overlapped “L” fin design has interlocking fins that are wound together to prevent movement and separation. The fins protect the entire tube and the designation works well for the applications where corrosion is an issue.

Fig. 12: Copper finned carbon steel tubes

Fig. 13: Cross-sectional schematic of ‘LL’ fin

5. ‘KL’ Finned Tube

‘KL’ Fin Tubes are also called knurled finned tubes. The fin is wrapped around the tube and the foot is rolled into the outer surface of the pre knurled tube and secured at each end. The fins are manufactured from a strip of metal which is machined into an accurately controlled L shape foot, similar to the L type fin, then it is rolled into a taper causing it to curl. The tube surface is knurled by a rotating tool, then the foot of the fin is knurled into the base tube providing a tight bond that optimizes thermal transfer.

Fig. 14: Aluminum finned carbon steel tubes

Fig. 15: Cross-sectional schematic of ‘KL’ fin

6. ‘G’ Embedded Finned Tube

The main design feature of Embedded Fin tubes involves the fin being inserted and welded into a helical groove cut into the tubes. G fins can be used in higher temperatures and are very durable. Embedded fins are best suited for use in high thermal cycling or high temperatures and where the fin side will be subjected to regular cleaning. This type of fin comes with a major limitation being the need for a minimum wall thickness of 1.65mm to accommodate the grooves. However, the ‘G’ type fin can withstand temperatures of up to 400°C and can incorporate carbon steel fins for better conductivity.

Fig. 16: Copper ‘G’ finned carbon steel tube

Fig. 17: Cross-sectional schematic of ‘G’ fin

7. Extruded Finned Tube

This fin type is formed from a bi-metallic tube consisting of an aluminum outer tube and an inner tube of almost any material. The fin is formed by rolling material from the outside of the exterior tube to produce an integral fin with excellent heat transfer properties and longevity. Extruded fin offers excellent corrosion protection of the base tube and excludes virtually all exposure to any outside fluid.

Fig. 19: Aluminum finned carbon steel tubes

Fig. 20: Cross-sectional schematic of extruded fin

Extruded finned tubes are used in high temperature conditions and corrosive atmospheric conditions such as:

  • operating temperatures up to 300°C;
  • offshore or other remote applications;
  • heat pipes;
  • dry air coolers for air, gas or oil;
  • air to air heat exchangers for HVAC applications;
  • air dehumidification in air treatment plants and
  • energy recovery in air exhaust system.

 

8. Wire Finned Tube

Wire loop tube is a high efficiency tube consisting of a series of elongated wire loops enhancing the surface of the tube, spirally wound on to the tube wall and held in position with a binding wire at the base of the loops. The loops and binding wire are then soft-soldered to the tube wall to give a metallic bond between the wire loops and the tube.

 

The wire loop secondary surface gives these enhanced tubes excellent heat transfer characteristics due to its ability to promote turbulence in the fluid passing over it. Temperatures of up to 250 °C can be applied to this type of finned tube.

Fig. 21: Copper wire loops on carbon steel tube

What next?

There are many variables  to be considered to successfully select and design a finned tube heat exchanger including:

  • the duty to be performed;
  • type, style and number of tubes required;
  • metals best suited for the tubes and the fins;
  • type of tube enhancement – fins or wire;
  • thickness of the tube walls;
  • I/D and O/D of the tubes;
  • pitch of the fins;
  • type and number of fans to provide air flow;
  • the environment in which the heat exchanger is to be used and
  • the duty it is required to perform

To ensure you get the best finned tube heat exchanger for your needs requires high-end software calculations, experience and technical know-how to bring it all together into a reliable unit that will provide years of efficient and reliable service.

 

Fluid Dynamics and its highly skilled international partners have many decades of expertise in the design, manufacture and maintenance of finned tube heat exchangers. Get in touch to find out more.

For more information, please visit incoloy 825 tubing.

Comments

0

0/2000

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name:(required)

Your Email:(required)

Subject:

Your Message:(required)

0/2000